19,262 research outputs found

    Planar Detonation Wave Initiation in Large-Aspect-Ratio Channels

    Get PDF
    In this study, two initiator designs are presented that are able to form planar detonations with low input energy in large-aspect-ratio channels over distances corresponding to only a few channel heights. The initiators use a single spark and an array of small channels to shape the detonation wave. The first design, referred to as the static initiator, is simple to construct as it consists of straight channels which connect at right angles. However, it is only able to create planar waves using mixtures that can reliably detonate in its small-width channels. An improved design, referred to as the dynamic initiator, is capable of detonating insensitive mixtures using an oxyacetylene gas slug injected into the initiator shortly before ignition, but is more complex to construct. The two versions are presented next, including an overview of their design and operation. Design drawings of each initiator are available elsewhere [7]. Finally, photographs and pressure traces of the resulting planar waves generated by each device are shown

    Analytical Model for the Impulse of Single-Cycle Pulse Detonation Tube

    Get PDF
    An analytical model for the impulse of a single-cycle pulse detonation tube has been developed and validated against experimental data. The model is based on the pressure history at the thrust surface of the detonation tube. The pressure history is modeled by a constant pressure portion, followed by a decay due to gas expansion out of the tube. The duration and amplitude of the constant pressure portion is determined by analyzing the gasdynamics of the self-similar flow behind a steadily moving detonation wave within the tube. The gas expansion process is modeled using dimensional analysis and empirical observations. The model predictions are validated against direct experimental measurements in terms of impulse per unit volume, specific impulse, and thrust. Comparisons are given with estimates of the specific impulse based on numerical simulations. Impulse per unit volume and specific impulse calculations are carried out for a wide range of fuel–oxygen–nitrogen mixtures (including aviation fuels) of varying initial pressure, equivalence ratio, and nitrogen dilution. The effect of the initial temperature is also investigated. The trends observed are explained using a simple scaling analysis showing the dependency of the impulse on initial conditions and energy release in the mixture

    Improved AURA k-Nearest Neighbour approach

    Get PDF
    The k-Nearest Neighbour (kNN) approach is a widely-used technique for pattern classification. Ranked distance measurements to a known sample set determine the classification of unknown samples. Though effective, kNN, like most classification methods does not scale well with increased sample size. This is due to their being a relationship between the unknown query and every other sample in the data space. In order to make this operation scalable, we apply AURA to the kNN problem. AURA is a highly-scalable associative-memory based binary neural-network intended for high-speed approximate search and match operations on large unstructured datasets. Previous work has seen AURA methods applied to this problem as a scalable, but approximate kNN classifier. This paper continues this work by using AURA in conjunction with kernel-based input vectors, in order to create a fast scalable kNN classifier, whilst improving recall accuracy to levels similar to standard kNN implementations

    Diagnostic studies of the 1987 Antarctic spring vortex

    Get PDF
    Dynamical fields form the UK Meteorological office global forecast model were used throughout the 1987 Airborne Antarctic Ozone Experiment (AAOE) for flight planning and diagnostic studies. Here, several studies based on the Meteorological Office global analysis (resolution 1.5 degrees lattitude x 1.875 degrees longitude, Lyne et al.) are described. The wind and temperature data derived from the model analysis are compared with observations made from both the DCB and ER-2, and an assessment of the model performance given. Derived quantities such as potential vorticity and model data and discrepancies due to the model data are discussed

    Photochemical trajectory modelling studies of the 1987 Antarctic spring vortex

    Get PDF
    Simulations of Antarctic ozone photochemistry performed using a photochemical model integrated along air parcel trajectories are described. This type of model has a major advantage at high latitudes of being able to simulate correctly the complex interaction between photolysis and temperature fields, which, because of the polar night cannot be represented accurately in a zonally averaged framework. Isentropic air parcel trajectories were computed using Meteorological Office global model analyses and forecast fields from positions along the ER-2 flight paths during the Airborne Antarctic Ozone Experiment in Austral Spring 1987. A photochemical model is integrated along these trajectories using the aircraft observations to initialize constituent concentrations. The model includes additional reactions of the ClO dimer and also bromine reactions, which are thought to play a significant role in Antarctica. The model also includes heterogeneous reactions which are invoked when the air parcel passes through a polar stratospheric cloud (PSC). The existence of a PSC is determined throughout the course of the model integration from the parcel temperature and the saturated vapour pressure of water over an assumed H2O/HNO3 mixture. The air parcel temperature is used to determine the saturated vapor pressure of HNO3 over the same mixture. Mixing ratios which exceed saturation result in condensation of the excess in the model and hence lead to a reduction of the amount of gas phase NO2 available for chemical reaction

    Acceptability of unsupervised HPV self-sampling using written instructions

    Get PDF
    Objectives The study measured the acceptability of self-sampling for human papillomavirus (HPV) testing in the context of cervical cancer screening. Women carried out self-sampling unsupervised, using a written instruction sheet.Setting Participants were women attending either a family planning clinic or a primary care trust for routine cervical screening.Methods Women (n=902) carried out self-sampling for HPV testing and then a clinician did a routine cervical smear and HPV test. Immediately after having the two tests, participants completed a measure of acceptability for both tests, and answered questions about ease of using the instruction sheet and willingness to use self-sampling in the future.Results The majority of women found self-sampling more acceptable than the clinician-administered test, but there was a lack of confidence that the test had been done correctly. Significant demographic differences in attitudes were found, with married women having more favourable attitudes towards self-sampling than single women, and Asian women having more negative attitudes than women in other ethnic groups. Intention to use self-sampling in the future was very high across all demographic groups.Conclusion Self-sampling for HPV testing was highly acceptable in this large and demographically diverse sample, and women were able to carry out the test alone, using simple written instructions. Consistent with previous studies, women were concerned about doing the test properly and this issue will need to be addressed if self-sampling is introduced. More work is needed to see whether the demographic differences we found are robust and to identify reasons for lower acceptability among single women and those from Asian background

    The case for new academic workspaces

    Get PDF
    Executive summary: This report draws upon the combined efforts of a number of estates professionals, architects, academics, designers, and senior managers involved in the planning of new university buildings for the 21st century. Across these perspectives, all would agree – although perhaps for different reasons - that this planning is difficult and that a number of particular considerations apply in the design of academic workspaces. Despite these difficulties, they will also agree that when this planning goes well, ‘good’ buildings are truly transformational – for both the university as a whole and the people who work and study in them. The value of well-designed buildings goes far beyond their material costs, and endures long after those costs have been forgotten ..

    A study of the dynamics of rotating space stations with elastically connected counterweight and attached flexible appendages. Volume 1: Theory

    Get PDF
    The formulation of a mathematical model for predicting the dynamic behavior of rotating flexible space station configurations was conducted. The overall objectives of the study were: (1) to develop the theoretical techniques for determining the behavior of a realistically modeled rotating space station, (2) to provide a versatile computer program for the numerical analysis, and (3) to present practical concepts for experimental verification of the analytical results. The mathematical model and its associated computer program are described

    Experiments on Visual Acuity and the Visibility of Markings on the Ground in Long-duration Earth-Orbital Space Flight

    Get PDF
    Visual acuity and visibility of markings on ground in long duration earth orbital space fligh
    • 

    corecore